Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment

نویسندگان

چکیده

•A systemic assay package was developed to seek MOFs for biomedical applications•Fe-based exhibited superb features that are suitable cutaneous treatment•The relationship between MOFs’ structure and their performance in-depth analyzed•This study provides guidance design materials treatment Nowadays, has been widely applied in the cosmetic pharmaceutical fields. However, traditional used often showed low efficiency limited applications due monotonous structures functionalities. Developing new with multifunctionalities properties is urgently needed. Our addresses this issue by constructing a versatile MOF-based platform, which presents avoids introduction of unnecessary additives preparation. More importantly, evaluation systems can be broadly comprehensive screening biocompatible multifunctional platforms field provide valuable advanced materials. Cutaneous possesses advantages, including decrease transient drug overdosage or systematic side effects. The evolution overcome limitations existing bring revolutionary development field. A promising solution turn emerging known as metal-organic frameworks (MOFs), featuring high porosity, easy modification, multifunctionality. work herein applications. Versatile based on were built, integrated functions features, biocompatibilities, sebum adsorbability, selective adsorption, antimicrobial activity, controlled release, skin permeability promotion. Such endow high-performance matrixes This paves avenue reformation biomedicinal Moreover, MOF system material field, also Skin, largest organ our body, offers an efficient safe route administration. administration1Prausnitz M.R. Langer R. Transdermal delivery.Nat. Biotechnol. 2008; 26: 1261-1268Crossref PubMed Scopus (1828) Google Scholar avoid overdosage, prevent degradation caused hepatic first-pass metabolism, effects, concentrate active substances at targeted lesion.2Ita K.B. delivery: progress challenges.J. Drug Deliv. Sci. Technol. 2014; 24: 245-250Crossref (73) Scholar, 3Xie Y. Xu B. Gao Controlled transdermal delivery model compounds MEMS microneedle array.Nanomedicine. 2005; 1: 184-190Crossref (105) 4Prausnitz Mitragotri S. Current status future potential Rev. Discov. 2004; 3: 115-124Crossref (1004) 5Langer delivery. Drugs target.Science. 2001; 293: 58-59Crossref (501) 6Hayes B.D. Klein-Schwartz W. Clark R.F. Muller A.A. Miloradovich J.E. Comparison toxicity acute overdoses citalopram escitalopram.J. Emerg. Med. 2010; 39: 44-48Abstract Full Text PDF (58) In past several decades, made great advancement biotechnology improvement molecules.7Sloan Wasdo Designing topical prodrugs make difference.Med. Res. 2003; 23: 763-793Crossref (76) Scholar,8Sloan S.C. Rautio J. Design optimized paradigm change.Pharm. 2006; 2729-2747Crossref (57) related lags far behind. perform merely physical supports dispersers functionalities, hinder application. To achieve expected performance, such chemical enhancer,9Haq A. Michniak-Kohn Effects solvents penetration enhancers thymoquinone: deposition study.Drug 2018; 25: 1943-1949Crossref (44) Scholar,10Ita B.K. Chemical delivery-success challenges.Drug 2015; 12: 645-651Google preservative,11Orton D.I. Wilkinson J.D. Cosmetic allergy.Am. Clin. Dermatol. 5: 327-337Crossref (85) annexing agents,12Gupta Sridhar D.B. Rai Molecular Dynamics simulation permeation molecules through lipid bilayer.J. Phys. Chem. 2016; 120: 8987-8996Crossref (60) usually added into cosmetics dermatological preparations, raise biosafety risks, costs, complexities users.13Ita Scholar,14Howell-Jones R.S. Wilson M.J. Hill K.E. Howard A.J. Price P.E. Thomas D.W. review microbiology, antibiotic usage resistance chronic wounds.J. Antimicrob. Chemother. 55: 143-149Crossref (236) Meanwhile, most commonly nanomaterials treatment, liposomes, micelles, nanoemulsions, have relatively stability, poor machining property, difficulty modification/functionality, etc., impede broader treatments.15Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua Advances challenges liposome assisted delivery.Front. Pharmacol. 6: 286Crossref (944) Therefore, developing types multifunctionalities, application address these current may class crystalline porous (MOFs).16Zhou H.C. Kitagawa Metal–organic (MOFs).Chem. Soc. 43: 5415-5418Crossref 17Maurin G. Serre C. Cooper Férey age porous-related solids.Chem. 2017; 46: 3104-3107Crossref 18Cui Li He H. Zhou Chen Qian functional materials.Acc. 49: 483-493Crossref (1124) feature tunable good stability machinability, facile post-synthetic modification.19Furukawa Cordova O’Keeffe M. Yaghi O.M. chemistry frameworks.Science. 2013; 341: 1230444Crossref (7521) Scholar,20Burrows A.D. Frost C.G. Mahon M.F. Richardson Post-synthetic modification tagged metal–organic frameworks.Angew. Int. Ed. Engl. 47: 8482-8486Crossref (237) They excellent various fields catalysis,21García-García P. Müller Corma catalysis relation homogeneous counterparts conventional solid catalysts.Chem. 2979-3007Crossref (251) Scholar,22Jiao Wang Jiang H.L. Q. catalytic applications.Adv. Mater. 30: 1703663Crossref (696) gas adsorption,23Li K. Sun Lollar C.T. Recent advances storage separation using frameworks.Mater. Today. 21: 108-121Crossref (694) 24Li J.R. Yu Lu L.B. Sculley Balbuena P.B. et al.Porous pre-designed single-molecule traps CO2 adsorption.Nat. Commun. 4: 1538Crossref (408) 25Xiang Zhang Z. Krishna Microporous framework carbon dioxide capture ambient conditions.Nat. 2012; 954Crossref (594) separation,26Rodenas Luz I. Prieto Seoane Miro Kapteijn Llabrés I Xamena F.X. Gascon nanosheets polymer composite separation.Nat. 14: 48-55Crossref (1314) Scholar,27Xiang Zhao Hong X. Ding D.R. Xie M.H. C.D. Das M.C. Gill al.Rationally tuned micropores within enantiopure highly acetylene ethylene.Nat. 2011; 2: 204Crossref (409) sensors,28Liu Qi Su strategy enzyme immobilization stable hierarchically frameworks.Nanoscale. 9: 17561-17570Crossref devices.29Ma Liu Ali M.M. Mahmood M.A.I. Labanieh Iqbal S.M. Wan Nucleic acid aptamers cancer research, diagnosis therapy.Chem. 44: 1240-1256Crossref structural diversity endows amenability exploration.30Chen Lykourinou V. Vetromile Hoang Ming L.J. Larsen R.W. Ma How proteins enter interior MOF? Investigation cytochrome c translocation consisting mesoporous cages microporous windows.J. Am. 134: 13188-13191Crossref 31Wang Hu Yang Liang Zhuang Gu Nanoscale Zr-based tailorable size introduced mesopore protein delivery.Adv. Funct. 28: 1707356Crossref (65) 32Horcajada Gref Baati Allan P.K. Maurin Couvreur Morris R.E. Metal-organic biomedicine.Chem. 112: 1232-1268Crossref (2982) rarely reported. campaign significance, will pave Herein, first time, we comprehensively screened library unique package, constructed serve production (Scheme 1). composed thirteen representative (ZIF-11(Zn),33Park K.S. Ni Côté A.P. Choi J.Y. Huang Uribe-Romo F.J. Chae H.K. Exceptional thermal zeolitic imidazolate frameworks.Proc Natl. Acad. U.S.A. 103: 10186-10191Crossref (4455) MIL-101(Fe),34Férey Mellot-Draznieks Millange Dutour Surblé Margiolaki chromium terephthalate-based unusually large pore volumes surface area.Science. 309: 2040-2042Crossref (3823) MIL-101-NH2(Fe),35Bauer Devic Horcajada Marrot Stock N. High-throughput rationalization formation metal organic iron (III) aminoterephthalate solvothermal system.Inorg. 7568-7576Crossref (367) MIL-101-CH3(Fe), MIL-101-NO2(Fe), MIL-101-Br(Fe), MIL-100(Fe),36Férey hybrid giant pores prepared combination chemistry, simulation, powder diffraction.Angew. 6296-6301Crossref (703) HKUST-1(Cu),37Chui S.S.Y. Lo S.M.F. Charmant J.P. Orpen A.G. Williams I.D. chemically functionalizable nanoporous material.Science. 1999; 283: 1148-1150Crossref (4709) MOF-808(Zr),38Liang Chevreau Ragon Southon P.D. Peterson V.K. D'Alessandro D.M. Tuning zirconium–tricarboxylate framework.CrystEngComm. 16: 6530-6533Crossref MIL-53(Al),39Serre Thouvenot Noguès Marsolier Louër D. Very breathing effect (III)-based solids: MIL-53 CrIII (OH)·x [O2C- C6H4-CO2] x [HO2C-C6H4-CO2H]x·x H2Oy.J. 2002; 124: 13519-13526Crossref (1466) UiO-66(Zr),40Cavka J.H. Jakobsen Olsbye U. Guillou Lamberti Bordiga Lillerud K.P. zirconium inorganic building brick forming exceptional stability.J. 130: 13850-13851Crossref (3865) PCN-333(Al),41Feng T.F. Bosch Wei Yuan Y.P. al.Stable containing encapsulation.Nat. 5979Crossref (390) PCN-333(Fe)41Feng chosen water cost, fabrication, area. An pre-evaluation conducted screen library, biocompatibility absorbability tests. Further property investigations, antibacterial control promoting then performed further explore potentials practical All studied samples according procedures reported literature modified procedures. Powder X-ray diffraction (PXRD), Fourier transform infrared spectrometer (FT-IR), scanning electron microscope (SEM), thermogravimetric analysis (TGA) (Figures S1–S4) data confirmed all possessed crystallinity structures, literature. Biocompatibility foremost factor applications, especially susceptible population. selected evaluated. cytotoxicity human dermal fibroblasts (HDF) (Figure S5A), 3T3 S5B), Hela S5C) cell lines. 50% cytotoxic con1 centration (CC50) values listed Table 1. inversely proportional CC50 value. MIL-101(Fe) PCN-333(Fe) representatives experiments longer exposure times cells. results there no significant difference after incubation 24 h compared 4 S5D–S5F). Among tested MOFs, Zn-based highest (ZIF-11(Zn): = 60 ± 20 μg/mL; (Hela) 9 (3T3) 15 μg/mL), followed Cu-based (HKUST-1(Cu): 1,140 340 620 210 560 160 μg/mL). could attributed particles, prohibited -uptake guaranteed safety Overall, Fe-, Zr-, Al-based suggest matrixes.Table 1The (μg/mL) Values Different MOFsHDF3T3HelaZIF-11(Zn)60 2060 1520 9HKUST-1(Cu)1,140 340560 160620 210PCN-333(Fe)7,230 6904,660 2204,430 1,140PCN-333(Al)6,610 6503,820 6703,840 740MIL-101(Fe)>7,2004,920 4106,030 60MIL-101-NH2(Fe)>7,2005,790± 4205,930 390MIL-101-NO2(Fe)>7,200>7,200>6,400MIL-101-CH3(Fe)>7,200>8,400>7,200MIL-101-Br (Fe)>7,200>9,000>8,400MIL-100(Fe)>7,200>9,600>7,200MOF-808(Zr)>6,400>7,200>7,200UiO-66(Zr)>7,200>7,200>6,400MIL-53(Al)>6,4003,690 4505,160 920 Open table tab Furthermore, hemolysis behavior blood cells irritation test investigate biocompatibilities. Briefly, different concentrations co-cultured red (RBC) 1, 2, 37°C. After centrifugation, absorbance supernatant 540 nm measured microplate reader. Figures 1 S6 show hemolytic Al-, Zn- much lower than clinical standard (5%). HKUST-1 not successfully obtained its decomposition resulted from stability.42Álvarez Sánchez-González E. Pérez Schneider-Revueltas Martínez Tejeda-Cruz al.Structure towards ethanol properties.Dalton Trans. 9192-9200Crossref Scholar,43DeCoste J.B. G.W. Schindler B.J. Killops K.L. Browe M.A. Mahle J.J. adsorption carboxylate Cu-BTC, Mg-MOF-74, UiO-66.J. 11922-11932Crossref (346) them, Fe-based lowest rate, 3.0% even concentration 2.0 mg/mL incubated h. These implied MOFs.44Grall Hidalgo Delic Garcia-Marquez Chevillard vitro (III; Fe, Al, Cr) trimesate nanocarriers.J. 8279-8292Crossref tests mice presented erythema edema treating indicating allergenicity S7). results, together tests, those offer higher treatment. Absorbability crucial Excess accumulation secretions enact pathological reactions, seborrheic dermatitis45Paulino L.C. New perspectives dandruff dermatitis: lessons learned bacterial fungal microbiota.Eur. 27: 4-7Crossref (15) hircismus.46Shokry de Oliveira A.E. Avelino M.A.G. Deus Filho N.R.A. Earwax: neglected body secretion step ahead diagnosis? pilot study.J. Proteomics. 159: 92-101Crossref (13) Additionally, surplus affect process, while elimination facilitate drugs/active therapeutic purposes. capacity two main dermatic (triglycerides oleic acid) therapy cosmetics. encapsulation glycerol triacetate acid, characterized PXRD, N2 porosimetry, TGA, FT-IR S8–S11), demonstrated successful MOFs. amounts summarized 2 S12. indicated sorption capability acid: 1.0 mg adsorb 6.1 triacetate; 3.5 significantly (e.g., absorb 1.3 1.2 acid). prominent ascribed porosity strong interactions linkers lipophilic molecules. addition, amount triacetate, probably larger molecular dimension (glycerol triacetate: 3.2 Å × 4.8 9.6 Å, 3.1 8.7 16.6 Å). Notably, (42 55 Å) area (BET: 2,770 m2/g) displayed uptake among We investigated influences capacities. variants substituent groups, -NH2, -NO2, -CH3, -Br terephthalate ligands, ability pristine S12), factors: (1) repellent groups ( -Br, - NO2, -CH3) enhance affinity hydrophobic sebum; (2) -NH2 group form hydrogen bonding interaction molecules, carbonyl group.47Hansch Leo Unger S.H. Kim K.H. Nikaitani Lien E.J. Aromatic constants structure-activity correlations.J. 1973; 1207-1216Crossref (1368) Scholar,48Seo P.W. Bhadra B.N. Ahmed Khan N.A. Jhung Adsorptive removal pharmaceuticals personal care products functionalized frameworks: remarkable adsorbents hydrogen-bonding abilities.Sci. Rep. 34462Crossref (133) centers present influence versus PCN-333(Al)). It preferable keep skin’s moisture eliminating excess (oil).49Musthaq Mazuy Jakus microbiome dermatology.Clin. 36: 390-398Abstract (21) toward water/triglycerides representatives. mixture triglycerides water, respectively. PCN-333(Fe), ratio lipid/water decreased nearly 2) stained Sudan Ⅳ comparison), means 80% effectively removed only 20% adsorbed. similar selectively adsorbed over water. carried out comparison. less oil S13). capability, eliminate harmful without resulting roughness. drug/active (particularly stratum corneum) critical bioavailability. (PCN-333 MIL-101 series MOFs) promote skin. fluorescent rhodamine B (RhB) molecule. treated pure RhB-loaded 12 depth RhB tracked confocal laser (CSLM), directly fluorescence intensity RhB. S14) revealed experimental (skin series) more penetrate penetrated deeper groups. notable MIL-101-CH3(Fe) MIL-101(Fe), 3 4). well releasing S15). major barrier corneum, keratinocytes lipids. superior capacities greatly sebum, lipid, other wastes expose corneum increase contact better penetration. drug-releasing another key For instance, best release hence leading outstanding skin-penetration promotion makes preeminent candidates matrix.Figure 4The Results Permeability Promoting Capacity Series MOFs.Show full captionMFIExp/MFICon Mean group/Mean group.View Large Image Figure ViewerDownload Hi-res image Download (PPT) MFIExp/MFICon group. Microbes mainly responsible infections during rot patches/cutaneous agents. Microorganisms inhabit cause diseases dermatitis ulcer).50Nakatsuji T.H. Narala Chun K.A. Two A.M. Yun al.Antimicrobials commensal bacteria protect against Staphylococcus aureus deficient atopic dermatitis.Sci. Transl. eaah4680Crossref (442) Scholar,51Lei photodynamic ulcers limbs infected Pseudomonas aeruginosa.Arch. 307: 49-55Crossref (49) antibiotics preservatives patches, lead unexpected resistance, toxicity, irritation. activities evaluate if they inherently inhibit growth undesirable microbes extra additives. Escherichia coli (E. coli), (S. aureus), aeruginosa (P. aeruginosa) determine minimum inhibition (MIC) 2. ZIF-11(Zn), HKUST-1(Cu), MIL-101-NH2(Fe) distinguished activities, Gram-positive bacteria. particle sizes S23–S25) investigated, represented ZIF-11(Zn). activity ZIF-11(Zn) small (Table S1). solubilization speed ICP-OES (inductively coupled plasma-optical emission spectrometry) test. trace (<0.15%) ions exuded h, smaller S2). it assumed both contacting possibility dissolution particles account activity. remain important nosocomial wound infections,52Grice E.A. Segre J.A. microbiome.Nat. Microbiol. 244-253Crossref (1570) Scholar,53Bunce Wheeler Reed Musser Barg Murine infection cocci.Infect. Immun. 1992; 60: 2636-2640Crossref superbacteria, MRSA (Methicillin-resistant VISA (vancomycin-intermediate PNSP (Penicillin-nonsusceptible pneumonia) Thus, matrix addition additives, risk effect.Table 2The MIC (mg/L) MOFsStaphylococcus aureusEscherichia coliPseudomonas aeruginosaZIF-11(Zn)150180350HKUST-1(Cu)400>1,000>1,000PCN-333(Fe)300560450PCN-333(Al)>360>1,000>1,000MIL-101(Fe)300>630500MIL-101-NH2(Fe)280>620430MIL-101-NO2(Fe)>600>900>900MIL-101-CH3(Fe)>650>900>900MIL-101-Br(Fe)>700>900>900MIL-100(Fe)>360>630>620MOF-808(Zr)>810>1,000>1,000UiO-66(Zr)>720>1,000>1,000 abundant sites them loading control-releasing property. study, (MIL-101(Fe), PCN-333(Fe)) procyanidine indomethacin (two treatment) diatomite because common As shown 5, diatomite. S16) S17). change PXRD patterns observed S16), terms procyanidine, entrapment 67%, 0.80 mg/mg 0.67 mg/mg, respectively, (0.03 mg/mg) 2000 (trace). correlated window/pore S3). lack guest (BET ∼23 m2/g).54Liu Fan Gong Guo al.Synthesis ZnFe2O4/SiO2 composites derived template.Bioinspir. Biomim. 2007; 30-35Crossref (14) rates result S18). order kinetics, released time frames. completely ∼120 130 72% 60% ∼130 100 MIL-101(Fe)’s slow window (∼12 Å)34Férey (26 30 Å).41Feng “burst effect” effects bioavailability substances. sleeping masks, perfume, burn ointment). evaluation, platform On one hand, biocompatibility, S19–S21; S3), guarantees reliable satisfactory entitle enhanced enhancers, liner, preservatives). cost reagents Fe salts) large-scale synthesis fine chemicals, cosmetics, matrix. functionality promotes customized meet specific requirements distinct preparations Finally, demonstrate peeling cleaning facial mask fabricated S22). patch, formula optimization commercial ongoing lab. conclusion, efficiently built exhibit capacity, promotion, control-release ideal guided understanding principles rational irons direct biocompatibilities corresponding closely design, synthesis,

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards multifunctional lanthanide-based metal-organic frameworks.

We report the synthesis, structure and physicochemical attributes of a new holmium(III)-based metal-organic framework whose 3D network structure gives rise to porosity; the reported structure-type can be varied using a range of different lanthanide ions to tune the photophysical properties and produce ligand-sensitised near-infrared (NIR) and visible light emitters.

متن کامل

Distinguishing Metal–Organic Frameworks

We consider two metal-organic frameworks as identical if they share the same bond network respecting the atom types. An algorithm is presented that decides whether two metal-organic frameworks are the same. It is based on distinguishing structures by comparing a set of descriptors that is obtained from the bond network. We demonstrate our algorithm by analyzing the CoRe MOF database of DFT opti...

متن کامل

Ferroelectric metal-organic frameworks.

Xuan Zhang Advisor: Prof. Kim R. Dunbar Apr. 16, 2012 Room 2102 Ever since its appearance about 17 years ago, 1 the term Metal-Organic Frameworks (MOFs) has been gaining tremendous attention in chemistry and crystal engineering because of the fascinating solid state materials it pertains to. These MOFs, also known as porous coordination polymers (PCPs) are characterized by their high porosity, ...

متن کامل

Heat-treatment of metal–organic frameworks for green energy applications

Increasing population, global climate change, and dwindling fossil fuel reserves have led to a green energy revolution in the past few years, particularly in the fields of green energy generation and storage. While fuel cell, lithium-ion batteries, and supercapacitors are far from technical jargon in today's world, the sheer number of these devices is not accurately exhibited in the consumer ma...

متن کامل

Olsalazine-Based Metal-Organic Frameworks as Biocompatible Platforms for H2 Adsorption and Drug Delivery.

The drug olsalazine (H4olz) was employed as a ligand to synthesize a new series of mesoporous metal-organic frameworks that are expanded analogues of the well-known M2(dobdc) materials (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2020.11.018